Perimeter and Area of Plane Figures;
 Surfice Area and Volume of Solids; Data Handling; and Probabilility.

Question 1	If the radius of a circle is increased by 25%, then its circumference will increase by - 25% - 50% - 75% - 100%
Question 2	The maximum number of rectangular faces possible in a cuboid is \qquad - 4 - 6 - 5 - 8
Question 3	If the side of a cube is tripled, its surface area increases by \qquad times. - two - three - six - nine

Question 4	The graphical representation of data in the form of equally spaced vertical bars is called - bar chart - pie chart - tally marks - pictograph
Question 5	The difference between the highest and the lowest observations is called the \qquad - frequency - range - observation - class
Question 6	The probability of a sure event is: - 0 - -1 - 1 - $\frac{1}{2}$
Question 7	The diagonal of a cuboid is given by: - $(l b+b l+h l)^{2}$ - $(l b+b l+h l)^{1 / 2}$ - $l^{2}+b^{2}+h^{2}$ - $\left(l^{2}+b^{2}+h^{2}\right)^{1 / 2}$

Question 8	If the side of a cube is decreased by 50%, then its volume is decreased by - 25% - 75% - 87.5% - 12.5%
Question 9	The area of an equilateral triangle of side 12 cm is \qquad - $64.5 \mathrm{~cm}^{2}$ - $62 \mathrm{~cm}^{2}$ - $62.35 \mathrm{~cm}^{2}$ - $60 \mathrm{~cm}^{2}$
Question 10	The probability P of occurrence of an event is given by - $0<\mathrm{P}<1$ - $0 \leq \mathrm{P} \leq 1$ - $-1 \leq \mathrm{P} \leq 1$ - $-1<\mathrm{P}<1$

Answers

Answer 1	25%
Answer 2	6
Answer 3	nine
Answer 4	bar chart
Answer 5	range
Answer 6	1
Answer 7	$l^{2}+b^{2}+h^{2}$
Answer 8	87.5%
Answer 9	$62.35 \mathrm{~cm}^{2}$
Answer 10	$0 \leq \mathrm{P} \leq 1$

